Course Title, Introduction to Biomedical Engineering

- 1. Details of course are as under:
 - a. Programme: BE Mechatronics Engineering
 - b. Title: Introduction to Biomedical Engineering
 - c. Course Code: MTS-317
 - d. Credit Hours: 3 0

Course Objective

2. The course provides an introduction to undergraduate students related to Biomedical Engineering. Topics include basic biomechanics, biomedical imaging, biomaterials, biomedical instrumentation and sensors, and biomedical device design regulatory requirements

Course Contents (Theory)

3. The course contents are as under:

Week	Content		
	S		
Week 1	Introduction to main branches of biomedical engineering including		
	Bioinstrumentation, Biomaterials, Biomechanics, Medical Imaging,		
	Medical Signal Processing, Rehabilitation Engineering and		
	Bioinformatics.		
Week 2	Introduction to mechanical, neuromuscular, and anatomical bases		
	of human movement. Explanation of the anatomy and physiology		
	of the Human Body in terms of different applications of the		
	biomedical		
	engineering.		
Week 3-4	Introduction to biomechanics and application of proper anatomical		
	and		
	biomechanical terminology associated with body structures.		
Week 5	Basics of biomaterials and biocompatibility		
Week 6	Introduction to bioelectricity and biopotentials in terms of a human		
	body		

	system				
Week 7	Basics of biosensors and bioinstrumentation with an				
	overview of				
	instrumentation systems used in clinical medicine and biomedical				
	research				
Week 8-9	Introduction to Biomedical Signals,				
	providing biomedical signal processing				
	background on technical aspects and presenting				
	the				
	relationships among different theoretical measures of biomedical				
	signals				
Week 10	Basics of medical imaging, image formation and reconstruction,				
	processing, analysis and interpretation.				
Week 11-	Introduction to biomedical devices (diagnostic and therapeutic) with				
12	an				
	insight into working of the biomedical devices by integration of				
	knowledge from previously taught topics.				
Week 13-	Basics of rehabilitation with an introduction to engineering				
14	principles				
	underlying the design, fabrication and utilization of devices for				
	persons with disabilities.				
Week 15	Case study on application of biomechanics,				
	biopotentials,				
	bioinstrumentation in Biomedical engineering				
Week 16	Understanding the basics of professional and ethical conduct in				
	Biomedical Engineering with an insight into major "problem areas"				
	that are widely debated in these fields including the ethics of				
	medical research				
	and regulatory processes.				

Course Learning Outcomes

4. Upon successful completion of the course, the student will demonstrate competency by being able to:

a. Understand, the basics of biomechanics, bioinstrumentation, biomaterials, artificial organs, medical imaging, clinical engineering, modelling of

biological systems, and apply these concepts in order to solve elementary problems in the field of biomedical engineering.

- b. Development of framework for biocompatibility of biomedical device.
- c. Investigate the origin of physiological signals in human body.
- d. Understanding the biomedical product life cycle of biomedical devices in context of environmental sustainability.
- e. Demonstrate an understanding of professional and ethical conduct in biomedical engineering.

Course Targets and OBE Mapping

CLO	Outcomes	Level	PLO
No.		of	
		Learnin	
		g	
1	Understand, the basics of biomechanics,	C3	3
	bioinstrumentation, biomaterials, artificial organs,		
	medical imaging, clinical engineering, modelling of		
	biological systems, and apply these concepts in		
	order to solve elementary problems in the field of		
	biomedical engineering		
2	Development of framework for biocompatibility	C4	3
	of biomedical device		
3	Investigate the origin of physiological signals in	C4	4
	human body		
4	Understanding the biomedical product life	C2	7
	cycle of biomedical devices in context of		
	environmental sustainability		